Chapter 4.1 part 4
F is a field We study $F[x]$
In both rings ∇_{2} and $F[x]$, the Fundamental Theorem of Arithmetic holds. Th li Every integer-element ∇_{L} - except 0 and $\neq 1$ can be written as a product of primes in an essentially unique way
Th 4.4 Every polynomial -element of $F[x]$ - except constants can be written as a product of irreducibles in an essentially unique way
Toxepptious are the same: these are O and the units in the ring (7 or $F[x]$)
Euclid's Lemma (in ∇_{L})
Thill. $a, b \in \pi_{c}, b>0$
There exist unique $q, r \in \mathbb{Z}$ such that

$$
a=b q+r \quad 0 \leqslant r<b
$$

either $\gamma=0$ or o< $<b$
Touclid's Lemuea (in $F[x]$)
Th 4.6 f, $g \in F[x] \quad g \neq O_{F}=O_{F[x]}$
There exist lenique $q, r \in F[x]$ such that

$$
f=g q+r \text { either } r=O_{F} \text { or } \operatorname{deg} r<\operatorname{deg} g
$$

If Uniqueness $f=g q_{1}+r_{1}$ either $r_{i}=O_{F}$ or deg $r_{i}<\operatorname{deg} \quad i=1,2$

$$
f=g q_{2}+r_{2}
$$

Wells use \quad Ex 12 pg 4 $\operatorname{deg}\left(r_{1} \pm r_{2}\right) \leq \max \left(\operatorname{deg} r_{1}, \operatorname{deg} r_{2}\right)$

$$
g\left(q_{1}-q_{2}\right)=r_{2}-\gamma_{1}
$$

Assume, for the sake of a contradiction, that $q_{1} \neq q_{2}, r_{1} \neq r_{2}$.
By Th 4,2,

$$
\begin{array}{r}
\operatorname{deg} g+\operatorname{deg}\left(q_{2}-q_{2}\right)=\operatorname{deg}\left(x_{2}-r_{1}\right) \\
\operatorname{deg}\left(r_{2}-r_{1}\right)=\max \left(\operatorname{deg} r_{1}, \operatorname{deg} r_{2}\right)<\operatorname{deg} g
\end{array}
$$

$\operatorname{deg}\left(q_{1}-q_{2}\right) \geq 0$ by the definition of degree.
Thus the equality cannot hold.
Existence
If there exists $q \in F[x]$ such that $f=g q$, then we are done with $r=O_{F}$. Assume that such $q \in F[x]$ does not exist.
Consider the set
$S=\{\operatorname{deg}(f-g t) \mid t \in F[x]\}$ - a set of non-negtive integers.
S is nonempty: If $f=O_{F}$, then pick $t=l_{F}$ with $f-g t=-g \neq O_{F}$
If $f \neq O_{F}$, then pick $t=O_{F}$ with $f-g t=f \neq O_{F}$
Thus S has its minimal element: for some $t=q \in F[x]$, $\operatorname{deg}(f-g q)$ is the smallest possible.
Let $f-g q=r$
We heed to prove that deg $<\operatorname{deg} g$.
It will follow from:
If degk$\geqslant \operatorname{deg} g$, then there is $t \in F[x]$ such that deg $(f-g t)<d e g r$. Let $r=a_{0}+\ldots+a_{n} x^{n} \quad a_{n} \neq O_{F}$

$$
g=b_{s}+\ldots+b_{m} x^{m} \quad b_{m} \neq O_{F}
$$

$$
n \geqslant m \quad(\operatorname{deg} r \geqslant \operatorname{deg} g)
$$

Let $t=q+a_{n} b_{m}^{-1} x^{n-m} \quad a_{n} b_{m}^{-1} \in F$

$$
\begin{aligned}
& f-g t=f-g\left(q+a_{n} b_{m}^{-1} x^{n-m}\right)=\underbrace{f-g q}_{r}-g a_{n} b_{m}^{-1} x^{n-m} \\
& =\gamma-a_{n} b_{m}^{-1} x^{n-m} g
\end{aligned}
$$

$$
=a_{0}+\cdots+a_{n} x^{n}-\left(b_{0} a_{n} b_{m}^{-1} x^{n-m}+\ldots+a_{n} b_{m}^{-1} b_{m} x^{n}\right) .
$$

Thus $\operatorname{deg}(f-g t)<h=\operatorname{deg} \gamma=\operatorname{deg}(f-g q)$.

